首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102630篇
  免费   1498篇
  国内免费   1219篇
工业技术   105347篇
  2022年   323篇
  2021年   682篇
  2020年   531篇
  2019年   695篇
  2018年   1142篇
  2017年   1102篇
  2016年   1187篇
  2015年   935篇
  2014年   1519篇
  2013年   4716篇
  2012年   2616篇
  2011年   3870篇
  2010年   3122篇
  2009年   3778篇
  2008年   3940篇
  2007年   4115篇
  2006年   3715篇
  2005年   3368篇
  2004年   3214篇
  2003年   3055篇
  2002年   2552篇
  2001年   2844篇
  2000年   2544篇
  1999年   2996篇
  1998年   9437篇
  1997年   6143篇
  1996年   4698篇
  1995年   3181篇
  1994年   2796篇
  1993年   2738篇
  1992年   1632篇
  1991年   1606篇
  1990年   1538篇
  1989年   1335篇
  1988年   1176篇
  1987年   858篇
  1986年   893篇
  1985年   922篇
  1984年   808篇
  1983年   698篇
  1982年   700篇
  1981年   676篇
  1980年   571篇
  1979年   475篇
  1978年   417篇
  1977年   542篇
  1976年   964篇
  1975年   299篇
  1974年   270篇
  1973年   255篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
The consequences of high energy mechanical milling, microwave-assisted heating and rapid thermal cooling on magnetic ordering in polycrystalline CaCu3Ti4O12 cubic perovskite have been investigated by means of X-ray powder diffractometry (300?K), dc magnetization in field – cooled and zero – field cooled modes (H = 100?Oe and 1000?Oe, T?=?5–300?K) (MT curves) and MH loop characteristics (T?=?5?K and 300?K, Hmax = 70?kOe). The MT curves of unmilled and 16?h milled samples show pure antiferromagnetic and weak ferromagnetic ordering, respectively, 1?h and 6?h milled samples demonstrate the coexistence of both the phases while microwave-assisted and quenched samples exhibit classic antiferromagnetic transition and a low temperature paramagnetic–like contribution with different weights, well supported by the MH loop characteristics. The observed transformations in the magnetic ordering are attributed to the ball-milling induced stress which curtails hybridization of empty Ti-3d orbitals with Cu-3d and O-2p orbitals and secondary phase formation. Oxygen vacancies associated with bound magnetic polarons originate ferromagnetism in the milled samples while unpaired electrons inhabited at the empty sites are the cause of paramagnetic centers. The low-temperature Curie – tail in MT curve for quenched and microwave assisted samples is attributed to Ti3+ cations.  相似文献   
62.
Na0.5+δBi0.5(Ti0.96W0.01Ni0.03)O3 thin films with various Na contents (abbreviated as Na.5+δBTWN, δ?=?? 3.0, ??1.5, 0, 1.5%) were fabricated on ITO/glass substrates using a chemical–solution process. The effects of Na nonstoichiometry on the microstructure, insulating, ferroelectric and dielectric performances are investigated. The pure perovskite phase can be obtained in Na0.5BTWN and Na0.515BTWN, while for Na0.470BTWN or Na0.485BTWN, the main composition contains secondary phase of TiO2. The grain size increases from 30?nm at δ?=?? 3.0% to 55?nm at δ?=?0%, then decreases to 52?nm with δ?=?1.5%. The leakage current of Na0.485BTWN sample is reduced dramatically in comparison with Na0.5+δBTWN (δ?=?? 3.0, 0, 1.5%). The big recoverable energy–storage density of 63.1?J/cm2 and high energy–storage efficiency of 55.0% can be obtained for Na0.485BTWN due to the improved electric break–down strength and large difference value between the remanent polarization and maximum polarization. Enhanced dielectricity is achieved in Na0.485BTWN with a high tunability of 36.0% and a figure of merit of 4.0 at 450?kV/cm and 500?kHz. These results demonstrated that the crystallization, micrographs and energy storage and dielectric properties of Na0.5Bi0.5TiO3 are highly sensitive to low levels of Na–site nonstoichiometry.  相似文献   
63.
In this work, the viability of producing biogenic hydroxyapatite from bio-waste animal bones, namely bovine (cow), caprine (goat) and galline (chicken), through a heat treatment process has been investigated. The animal bones were locally sourced, cleaned to remove collagen and subsequently heat treated in air atmosphere at different temperatures ranging from 600?°C to 1000?°C. From the range of sintering temperatures investigated, it was found that hydroxyapatite derived from bovine bone showed good thermal stability while those produced from caprine and galline bones exhibited phase instability with traces of tri-calcium phosphate (TCP) being detected after heat treatment beyond 700?°C. The porous nature of the bone samples can be observed from the microstructures obtained and supported by low relative density. Heating the bovine and caprine bones at selected temperatures yielded porous HA body, having hardness values that are comparable with human cortical bone. However, the sintered galline bone sample showed higher porosity levels and low hardness when compared to the other two bone types.  相似文献   
64.
In this work, ultra-low loss Li2MgTi0.7(Mg1/3Nb2/3)0.3O4 ceramics were successfully prepared via the conventional solid-state method. X-ray photoelectron spectroscopy (XPS), thermally stimulated depolarization current (TSDC) and bond energy were used to determine the distinction between intrinsic and extrinsic dielectric loss in (Mg1/3Nb2/3)4+ ions substituted ceramics. The addition of (Mg1/3Nb2/3)4+ ions enhances the bond energy in unit cell without changing the crystal structure of Li2MgTiO4, which results in high Q·f value as an intrinsic factor. The extrinsic factors such as porosity and grain size influence the dielectric loss at lower sintering temperature, while the oxygen vacancies play dominant role when the ceramics densified at 1400?°C. The Li2MgTi0.7(Mg1/3Nb2/3)0.3O4 ceramics sintered at 1400?°C can achieve an excellent combination of microwave dielectric properties: εr =?16.19, Q·f?=?160,000?GHz and τf =??3.14?ppm/°C. In addition, a certain amount of LiF can effectively lower the sintering temperature of the matrix, and the Li2MgTi0.7(Mg1/3Nb2/3)0.3O4-3?wt% LiF ceramics sintered at 1100?°C possess balanced properties with εr?=?16.32, Q·f?=?145,384?GHz and τf =??16.33?ppm/°C.  相似文献   
65.
Herein we study the infiltration behavior of Ti and Cu fillers into a Ti2AlC/Ti3AlC2MAX phase composites using a TIG-brazing process. The microstructures of the interfaces were investigated by scanning electron microscopy and energy dispersive spectrometry. When Ti2AlC/Ti3AlC2 comes into contact with molten Ti, it starts decomposing into TiCx, a Ti-richandTi3AlC; when in contact with molten Cu, the resulting phases are Ti2Al(Cu)C, Cu(Al), AlCu2Ti and TiC. In the presence of Cu at approximately 1630 °C, a defective Ti2Al(Cu)C phase was formed having a P63/mmc structure. Ti3AlC2 MAX phase was completely decomposed in presence of Cu or Ti filler-materials. The decomposition of Ti2AlC to Ti3AlC2 was observed in the heat-affected zone of the composite. Notably, no cracks were observed during TIG-brazing of Ti2AlC/Ti3AlC2 composite with Ti or Cu filler materials.  相似文献   
66.
In this paper, a new synthetic pathway is proposed for the system YIn1-xMnxO3, a bright blue inorganic pigment, discovered in 2009. Blue pigment samples with increasing concentration of Mn3+ (x?=?0.08, 0.12 and 0.16) were prepared using the complex polymerization method (CPM) and compared with those synthesized via solid state reaction. All powders, the amorphous precursor from CPM and the starting materials for solid state method, were calcined at 1000, 1100, 1200 and 1300?°C for 12?h, and the resulting blue pigments were characterized by X-ray diffraction (XRD), colorimetric system CIE L*a*b* and Near infrared (NIR) reflectance measurements. XRD patterns and Rietveld Refinement show that the lowest temperature at which single hexagonal phase (isostructural to YInO3) is formed is 1000?°C for CPM method and 1300?°C for conventional solid state method, respectively. The L*a*b* values demonstrate that the coloration of powders prepared by CPM exhibit temperature dependence below 1300?°C, a color shade shift from grayish blue to intense deep blue is observed when heating the samples from 1000 to 1300?°C. Blue pigments obtained by CPM have smaller particle size due to low temperatures and excellent near-infrared reflectance comparable to those by solid state method. Thus, providing advantages for application process and energy efficiency.  相似文献   
67.
The effect of various amounts of copper oxide (CuO) up to 1?wt% on the densification behaviour and mechanical properties of 3?mol% yttria-tetragonal zirconia polycrystal (Y-TZP) were studied by using microwave (MW) sintering method. The MW sintering was performed at temperatures between 1100?°C and 1400?°C, with a heating rate of 30?°C/min. and holding time of 5?min. The beneficial effect of MW in enhancing densification was also compared for the undoped and 0.2?wt% CuO-doped Y-TZP when subjected to conventional sintering (CS) method. The results showed that significant enhancement in the relative density and Vickers hardness were observed for the undoped Y-TZP when MW-sintered between 1100?°C and 1250?°C. It was revealed that the 0.2?wt% CuO-doped Y-TZP and MW sintered at 1250–1300?°C could attain ≥?99.8% of theoretical density, Vickers hardness of about 14.4?GPa, fracture toughness of 7.8 MPam1/2 and exhibited fine equiaxed tetragonal grain size of below 0.25?µm. In contrast, the addition of 1?wt% CuO was detrimental and the samples exhibited about 50% monoclinic phase upon sintering coupled with poor bulk density and mechanical properties. The study also revealed that the addition of 0.2?wt% CuO and subjected to conventional sintering produced similar densification as that obtained for microwave sintering, thus indicating that the dopant played a more significant role than the sintering method.  相似文献   
68.
This work reports the characteristics of nonstoichiometric Na0.5+xBi0.5+yTi0.96W0.01Ni0.03O3 (x?=?0.0%, y?=?1.0%; x?=?0.5%, y?=?2.0%; x?=?1.0%, y?=?4.0%) ceramic films derived from chemical solution deposition and the role played by excess Na/Bi in modifying microstructure and electrical properties. Single perovskite phase structure can be maintained in all compositions. Decreased grain size can be obtained with the increasing compensation for volatile Na/Bi elements. Particularly, extra amounts of 0.5?mol% Na and 2.0?mol% Bi leads to reduced leakage and enhanced ferroelectric polarization. Meanwhile, due to the high breakdown electrical field strength and large difference between maximum and remanent polarization, an excellent energy storage performance can be achieved in Na0.505Bi0.52Ti0.96W0.01Ni0.03O3 sample, which is distinguished by a recoverable energy storage density of 40.5?J/cm3 and an energy storage efficiency of 43.6% at 2515?kV/cm as well as a good frequency stability. Hence, the regulation for the content of volatile elements is effective to modify the electrical response of Na0.5Bi0.5TiO3-based materials.  相似文献   
69.
Polycrystalline ceramics of Co(Cr1-xFex)2O4 (0?≤?x?≤?0.12) were experimentally studied based on a series of temperature and time-dependent dc magnetic measurements using different magnetic field histories. Magnetization in field cooling process was continuously decreased for doping content x in the range of 0?≤?x?≤?0.04. Remarkable negative magnetization is observed when x reaches to 0.06 and persists up to x?=?0.1. Two-sublattice model is established and competition of the two magnetic sublattices is responsible for the phenomenon. The magnetic switching effect is realized just by changing the magnitude of the applied magnetic field and double magnetocaloric effects are obtained. These unique features under low magnetic fields show attractive for application in spintronic devices due to that the magnetic state can effectively be tuned through magnetic field or temperature. Besides, the system exhibits both positive and negative exchange bias fields which are considered to be originating from the unidirectional anisotropy of exchange coupling of antiferromagnetic/ferromagnetic phases and spin reorientation of the two sublattices magnetic moments, respectively.  相似文献   
70.
Corrosion resistance is a crucial property to achieve successful superconducting joints of Y0.5Gd0.5Ba2Cu3O7-z (YGdBCO) coated conductors (CCs). Cu and Ag metallic layers need to be fully removed from the area of conductor to be joint to allow for a superconducting path across the joint. Therefore, when using a wet etching process to remove the metallic layers, the joint performance can be significantly influenced by the etching conditions. The effects of chemical etching with ammonia water and hydrogen peroxide mixture on crystal structure, surface microstructure and critical current (Ic) of YGdBCO CCs were systematically investigated. We found the set of etching parameters that does not affect conductor performance, leaving the Ic of the YGdBCO conductor unchanged upon etching. However, when the etching conditions are not optimal, decrease in Ic was found and the underlying reasons driving the degradation were investigated. Raman spectroscopy and XRD analysis indicated that the reduced Ic is mainly due to oxygen deficiency in the YGdBCO crystal lattice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号